1. Главная
  2. >
  3. Социальная ответственность
Социальная ответственность

Мы стремимся улучшить жизнь общества, в котором мы работаем и живем. Наша деятельность по поддержке, включая усилия наших сотрудников-волонтеров, направлена на инициативы, которые приносят значимую и долгосрочную пользу нашей планете.

 

Компания Foreign trade company оказывает поддержку обществу по двум основным направлениям: благотворительность и активное участие в глобальных усилиях по декарбонизации. Эти инициативы соответствуют нашей цели - создать более эффективный и устойчивый мир.

 

Наш вклад привел к практическим и эффективным решениям по сокращению глобальных выбросов углекислого газа. Мы помогли таким регионам, как Западная Африка, Ближний Восток, Индия и Южная Америка, запустить демонстрационные проекты по производству экологически чистой энергии. Эти инициативы позиционируют Foreign trade company как поддерживающего и мотивирующего партнера, способствующего росту как нашей компании, так и наших сотрудников.

“Green ammonia production using current and emerging electrolysis technologies” (DTU, 2024)

Shows that maximizing economic efficiency (minimizing Levelized Cost of Ammonia, LCOA) often requires curtailing intermittent renewables, and introduces the metric LCOU (Levelized Cost of Utilization). It provides a framework for designing integrated green ammonia plants accounting for renewable intermittency and synthesis flexibility.

Evaluates transforming conventional HB ammonia plants to operate with зелёный водород, assessing pathways including PEM and SOEC electrolyzers and electrochemical nitrogen reduction (e‑NRR). Emphasizes decarbonization potential, energy system synergies, scalability, and the critical challenges for adoption.

Analyzes a full Power-to-Ammonia plant layout: renewable generation, hydrogen/nitrogen supply, synthesis, and storage. Highlights flexible operation strategies, energy storage optimization, load-ramping in HB synthesis, and cost sensitivity analyses in Italian case studies—optimal LCOA ≈ 0.59 USD/kgNH₃ under 2050 cost assumptions.

This open-access study benchmarks Alkaline Electrolysis (AEC) vs. Solid Oxide Electrolysis (SOEC) directly integrated with a Haber–Bosch loop. It focuses on system integration, heat recovery strategies, process intensification, and techno-economic projections, estimating future green ammonia cost (~495 €/t by 2050 with SOEC integration).

“Green ammonia production using current and emerging electrolysis technologies” (DTU, 2024)

Shows that maximizing economic efficiency (minimizing Levelized Cost of Ammonia, LCOA) often requires curtailing intermittent renewables, and introduces the metric LCOU (Levelized Cost of Utilization). It provides a framework for designing integrated green ammonia plants accounting for renewable intermittency and synthesis flexibility.

Evaluates transforming conventional HB ammonia plants to operate with зелёный водород, assessing pathways including PEM and SOEC electrolyzers and electrochemical nitrogen reduction (e‑NRR). Emphasizes decarbonization potential, energy system synergies, scalability, and the critical challenges for adoption.

Analyzes a full Power-to-Ammonia plant layout: renewable generation, hydrogen/nitrogen supply, synthesis, and storage. Highlights flexible operation strategies, energy storage optimization, load-ramping in HB synthesis, and cost sensitivity analyses in Italian case studies—optimal LCOA ≈ 0.59 USD/kgNH₃ under 2050 cost assumptions.

This open-access study benchmarks Alkaline Electrolysis (AEC) vs. Solid Oxide Electrolysis (SOEC) directly integrated with a Haber–Bosch loop. It focuses on system integration, heat recovery strategies, process intensification, and techno-economic projections, estimating future green ammonia cost (~495 €/t by 2050 with SOEC integration).

Envision Commissions the World’s Largest AI‑Enabled Green Hydrogen & Ammonia Plant (Chifeng Net Zero Park)

Shows that maximizing economic efficiency (minimizing Levelized Cost of Ammonia, LCOA) often requires curtailing intermittent renewables, and introduces the metric LCOU (Levelized Cost of Utilization). It provides a framework for designing integrated green ammonia plants accounting for renewable intermittency and synthesis flexibility.

Evaluates transforming conventional HB ammonia plants to operate with зелёный водород, assessing pathways including PEM and SOEC electrolyzers and electrochemical nitrogen reduction (e‑NRR). Emphasizes decarbonization potential, energy system synergies, scalability, and the critical challenges for adoption.

Analyzes a full Power-to-Ammonia plant layout: renewable generation, hydrogen/nitrogen supply, synthesis, and storage. Highlights flexible operation strategies, energy storage optimization, load-ramping in HB synthesis, and cost sensitivity analyses in Italian case studies—optimal LCOA ≈ 0.59 USD/kgNH₃ under 2050 cost assumptions.

This open-access study benchmarks Alkaline Electrolysis (AEC) vs. Solid Oxide Electrolysis (SOEC) directly integrated with a Haber–Bosch loop. It focuses on system integration, heat recovery strategies, process intensification, and techno-economic projections, estimating future green ammonia cost (~495 €/t by 2050 with SOEC integration).

“Transitioning Ammonia Production: Green Hydrogen‑Based Haber–Bosch” (MethodsX, 2023)

Shows that maximizing economic efficiency (minimizing Levelized Cost of Ammonia, LCOA) often requires curtailing intermittent renewables, and introduces the metric LCOU (Levelized Cost of Utilization). It provides a framework for designing integrated green ammonia plants accounting for renewable intermittency and synthesis flexibility.

Evaluates transforming conventional HB ammonia plants to operate with зелёный водород, assessing pathways including PEM and SOEC electrolyzers and electrochemical nitrogen reduction (e‑NRR). Emphasizes decarbonization potential, energy system synergies, scalability, and the critical challenges for adoption.

Analyzes a full Power-to-Ammonia plant layout: renewable generation, hydrogen/nitrogen supply, synthesis, and storage. Highlights flexible operation strategies, energy storage optimization, load-ramping in HB synthesis, and cost sensitivity analyses in Italian case studies—optimal LCOA ≈ 0.59 USD/kgNH₃ under 2050 cost assumptions.

This open-access study benchmarks Alkaline Electrolysis (AEC) vs. Solid Oxide Electrolysis (SOEC) directly integrated with a Haber–Bosch loop. It focuses on system integration, heat recovery strategies, process intensification, and techno-economic projections, estimating future green ammonia cost (~495 €/t by 2050 with SOEC integration).